Integration Formulae Involving Derivatives

By T. N. L. Patterson*

Abstract. A method, developed by Hammer and Wicke, for deriving high pre-
cision integration formulae involving derivatives is modified. It is shown how such
formulae may be simply derived in terms of well-known polynomials. [li|

1. Introduction. The construction of high precision integration formulae which
make use of the derivatives of the integrand has been discussed by Stroud and
Stancu [1] and by Hammer and Wicke [2]. Stroud and Stancu [1] considered formulae
of the form

b n kj—1 o
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and have calculated a few results for the special case, k; = k, for all j, withn = 1(1)7,

k = 3 and 5 and w(z) = 1, e==* and e—=. The formulae have degree n(k + 1) —1,

use nk functional evaluations and are obtained by solving sets of nonlinear equations.
Hammer and Wicke [2] considered formulae of the form

[(k=1) /2]
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where [z] denotes the largest integer < x. These formulae have degree 4m 4 k when
kis odd and 4m + k¥ —1 when k is even and use 2m + 1 + [(k —1)/2] function
values. The m abscissae z; are the zeros of a numerically determined orthogonal
polynomial. Struble [3] has calculated formulae for the cases k¥ = 1 and 2 and

= 1(1)10. He notes that some numerical difficulties occur for large values of m.
The formulae of Stroud and Stancu [1] use about twice as many function values as
the Hammer and Wicke [2] formulae for the same integrating degree and are much
more difficult to obtain.

This paper is concerned with formulae of the Hammer and Wicke type. It is
shown that with a slight decrease in integrating power the derivation of the formula
can be simplified and some results are presented.

2. Theory. The formulae of Hammer and Wicke [2] are based on the well-known
result that

® L ([Vowars =L [ a - orowas

where ([)"g(x)(dx)" denotes repeated integration over [0, z].
It is equally true that
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@) [ ([ Voo =5 [ a - arewas.

1t is straightforward to show by repeated integration of f (")(x) that,

Thus using (4) gives,
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In the remainder term 7 lies in [—1, 1]. It is clear that the best possible accuracy
will be obtained by integrating the first term on the right-hand side of (6) using a
quadrature formula of highest precision with respect to the weight function (1 — x)*
over [—1, 1]. The abscissae, x;, of this quadrature formula are simply the roots of
the Jacobi polynomial P,,*%(z) (Krylov [4]) and the weights H; are given by

)

2k+1
(1 — z)"[Pn*@n)]*
The resulting quadrature formula (7) has degree 2m + k —1 and uses m + k
functional evaluations. For the same integrating degree (7) uses about k/2 more
functional evaluations than (2). Tables of the abscissae x; and weights H ; have been

given by Stroud & Secrest [5] for £ = 1 using 2(1)30 points and for k = 2, 3 and 4
using 2(1)20 points.

(8) H; =
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